Assertional logics, truth-equational logics, and the hierarchies of abstract algebraic logic

نویسندگان

  • Hugo Albuquerque
  • Josep Maria Font
  • Ramon Jansana
  • Tommaso Moraschini
چکیده

We establish some relations between the class of truth-equational logics, the class of assertional logics, other classes in the Leibniz hierarchy, and the classes in the Frege hierarchy. We argue that the class of assertional logics belongs properly in the Leibniz hierarchy. We give two new characterizations of truth-equational logics in terms of their full generalized models, and use them to obtain further results on the internal structure of the Frege hierarchy and on the relations between the two hierarchies. Some of these results and several counterexamples contribute to answer a few open problems in abstract algebraic logic, and open a new one. 2010 Mathematics Subject Classification: 03G27 03B22

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EQ-logics with delta connective

In this paper we continue development of formal theory of a special class offuzzy logics, called EQ-logics. Unlike fuzzy logics being extensions of theMTL-logic in which the basic connective is implication, the basic connective inEQ-logics is equivalence. Therefore, a new algebra of truth values calledEQ-algebra was developed. This is a lower semilattice with top element endowed with two binary...

متن کامل

Truth Values and Connectives in Some Non-Classical Logics

The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...

متن کامل

Categorical Abstract Algebraic Logic: Truth-Equational π-Institutions

Finitely algebraizable deductive systems were introduced by Blok and Pigozzi to capture the essential properties of those deductive systems that are very tightly connected to quasivarieties of universal algebras. They include the equivalential logics of Czelakowski. Based on Blok and Pigozzi’s work, Herrmann defined algebraizable deductive systems. These are the equivalential deductive systems ...

متن کامل

Term Equational Systems and Logics

We introduce an abstract general notion of system of equations between terms, called Term Equational System, and develop a sound logical deduction system, called Term Equational Logic, for equational reasoning. Further, we give an analysis of algebraic free constructions that together with an internal completeness result may be used to synthesise complete equational logics. Indeed, as an applic...

متن کامل

On the mathematical synthesis of equational logics

Birkhoff [1935] initiated the general study of algebraic structure. Importantly for our concerns here, his development was from (universal) algebra to (equational) logic. Birkhoff’s starting point was the informal conception of algebra based on familiar concrete examples. Abstracting from these, he introduced the concepts of signature and equational presentation, and thereby formalised what is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016